random selection: Al-Fe-Si (9 entries found)
Displaying 50 entries out of 213 entries found.
Crystallographic data Sstructural stability [Footnotes] Magnetic properties [Footnotes, magnetic units] Methods References
Materials ID Formula Formula units per cell Atomic sites per cell Crystal system Space group [Number] Formation energy (eV/atom) Energy relative to convex hull (eV/atom) Structure search Averaged magnetic moment (μB/atom) Magnetic polarization, Js (T) Magnetic easy axis Magnetic anisotropy constants:
Ka-c, Kb-c, Kb-a, Kd-a (MJ/m3)
Curie temperature, TC (K) Methods References
MMD-2 Co 2 2 hexagonal P6_3/mmc [194] 0.000 0 (stable) hcp Co 1.61 1.72 c 0.22 0.22 0.00 . 1474.2 DFT mp-54
MMD-189 Fe3Ge 2 8 hexagonal P6_3/mmc [194] -0.093 0.009 AGA search 1.60 1.55 ab plane -0.31 . . . . DFT MS
MMD-325 Co3Si 2 8 hexagonal P6_3/mmc [194] -0.263 0.075 AGA search 0.65 0.72 ab plane -2.30 . . . . DFT MS
MMD-326 Co3Si 2 8 hexagonal P6_3/mmc [194] -0.266 0.072 AGA search 0.71 0.78 ab plane -2.84 . . . . DFT MS
MMD-839 Ni 2 2 hexagonal P6_3/mmc [194] 0.027 0.027 MP 0.65 0.70 . . . . . . DFT mp-10257
MMD-851 Y 2 2 hexagonal P6_3/mmc [194] 0.000 0 (stable) bulk Y 0.03 0.01 . . . . . . DFT mp-112
MMD-853 Co 4 4 hexagonal P6_3/mmc [194] 0.003 0.003 MP 1.64 1.76 . . . . . . DFT mp-1183710
MMD-854 Y 4 4 hexagonal P6_3/mmc [194] 0.010 0.010 MP 0.00 0.00 . . . . . . DFT mp-1187717
MMD-861 Zr 2 2 hexagonal P6_3/mmc [194] 0.000 0 (stable) bulk Zr 0.00 0.00 . . . . . . DFT mp-131
MMD-862 Fe 2 2 hexagonal P6_3/mmc [194] 0.084 0.084 MP 0.00 0.00 . . . . . . DFT mp-136
MMD-870 Ti 2 2 hexagonal P6_3/mmc [194] 0.000 0 (stable) bulk Ti 0.00 0.00 . . . . . . DFT mp-46
MMD-875 Sc 2 2 hexagonal P6_3/mmc [194] 0.000 0 (stable) bulk Sc 0.01 0.01 . . . . . . DFT mp-67
MMD-879 Zn 2 2 hexagonal P6_3/mmc [194] 0.000 0 (stable) bulk Zn 0.00 0.00 . . . . . . DFT mp-79
MMD-884 Cr 2 2 hexagonal P6_3/mmc [194] 0.399 0.399 MP 0.00 0.00 . . . . . . DFT mp-89
MMD-887 Cu 4 4 hexagonal P6_3/mmc [194] 0.007 0.007 MP 0.00 0.00 . . . . . . DFT mp-989695
MMD-888 Cu 2 2 hexagonal P6_3/mmc [194] 0.010 0.010 MP 0.00 0.00 . . . . . . DFT mp-989782
MMD-899 ZrMn2 4 12 hexagonal P6_3/mmc [194] -0.193 0.000 MP 0.42 0.34 ab plane -0.04 . . . . DFT mp-1014
MMD-900 ZrMn2 8 24 hexagonal P6_3/mmc [194] -0.193 0.000 MP 0.47 0.37 ab plane -0.28 . . . . DFT mp-1015
MMD-902 MnSe 2 4 hexagonal P6_3/mmc [194] -0.328 0.012 MP 2.16 1.31 ab plane -1.89 . . . . DFT mp-10204
MMD-906 Mn3Ga 2 8 hexagonal P6_3/mmc [194] 0.046 0.101 MP 0.94 0.92 ab plane -1.37 . . . . DFT mp-1078584
MMD-907 Mn3Ge 2 8 hexagonal P6_3/mmc [194] -0.032 0.022 MP 1.21 1.16 ab plane -1.70 . . . . DFT mp-1078873
MMD-924 ZrMn3 2 8 hexagonal P6_3/mmc [194] 0.148 0.293 MP 1.61 1.28 ab plane -0.97 . . . . DFT mp-1188045
MMD-952 Mn2Nb 4 12 hexagonal P6_3/mmc [194] -0.153 0 (stable) MP 0.17 0.15 c 0.27 . . . . DFT mp-12659
MMD-957 Mn3Al10 2 26 hexagonal P6_3/mmc [194] -0.231 0.008 MP 0.19 0.15 ab plane -0.07 . . . . DFT mp-16511
MMD-962 TiMn2 4 12 hexagonal P6_3/mmc [194] -0.272 0 (stable) MP 0.07 0.06 . . . . . . DFT mp-1949
MMD-967 ScMn2 4 12 hexagonal P6_3/mmc [194] -0.141 0 (stable) MP 0.00 0.00 . . . . . . DFT mp-2039
MMD-968 Mn2Ge 2 6 hexagonal P6_3/mmc [194] -0.019 0.053 MP 1.49 1.35 c 1.97 . . . . DFT mp-20473
MMD-999 MnAs 2 4 hexagonal P6_3/mmc [194] -0.215 0.027 MP 1.43 1.04 ab plane -0.96 . . . . DFT mp-610
MMD-1022 MnCu3 2 8 hexagonal P6_3/mmc [194] 0.095 0.095 MP 0.97 0.91 c 0.01 . . . . DFT mp-974747
MMD-1023 MnZn3 2 8 hexagonal P6_3/mmc [194] -0.010 0.010 MP 0.79 0.65 c 0.12 . . . . DFT mp-975079
MMD-1026 MnP 2 4 hexagonal P6_3/mmc [194] -0.452 0.156 MP 0.94 0.85 ab plane -0.02 . . . . DFT mp-999516
MMD-1061 GaFe3 2 8 hexagonal P6_3/mmc [194] -0.112 0.015 MP 1.65 1.59 ab plane -1.60 . . . . DFT mp-1078766
MMD-1070 FeSe 2 4 hexagonal P6_3/mmc [194] -0.083 0.185 MP 1.16 0.85 ab plane -3.52 . . . . DFT mp-1090
MMD-1071 ScFe2 4 12 hexagonal P6_3/mmc [194] -0.261 0.022 MP 0.92 0.75 c 0.56 . . . . DFT mp-1095443
MMD-1072 Fe2Mo 4 12 hexagonal P6_3/mmc [194] -0.011 0 (stable) MP 0.38 0.36 ab plane -4.83 . . . . DFT mp-1095682
MMD-1087 Fe3S 2 8 hexagonal P6_3/mmc [194] 0.141 0.395 MP 2.08 1.97 ab plane -0.97 . . . . DFT mp-1184373
MMD-1088 FeCu3 2 8 hexagonal P6_3/mmc [194] 0.172 0.172 MP 0.70 0.67 c 0.68 . . . . DFT mp-1184444
MMD-1089 FeGe3 2 8 hexagonal P6_3/mmc [194] 0.424 0.485 MP 0.59 0.41 ab plane -0.27 . . . . DFT mp-1184472
MMD-1090 ScFe3 2 8 hexagonal P6_3/mmc [194] 0.023 0.235 MP 1.68 1.38 ab plane -0.59 . . . . DFT mp-1186986
MMD-1092 ZrFe2 8 24 hexagonal P6_3/mmc [194] -0.291 0.008 MP 1.03 0.82 ab plane -0.29 . . . . DFT mp-1190681
MMD-1093 ScFe2 8 24 hexagonal P6_3/mmc [194] -0.274 0.008 MP 0.91 0.75 c 0.31 . . . . DFT mp-1190697
MMD-1095 YFe3 6 24 hexagonal P6_3/mmc [194] -0.071 0 (stable) MP 1.39 1.06 ab plane -0.78 . . . . DFT mp-1192321
MMD-1096 NbFe2 8 24 hexagonal P6_3/mmc [194] -0.146 0.008 MP 0.68 0.61 ab plane -0.31 . . . . DFT mp-1192350
MMD-1101 Y2Fe17 2 38 hexagonal P6_3/mmc [194] -0.015 0.020 MP 2.02 1.74 ab plane -1.12 . . . . DFT mp-1196012
MMD-1106 FeN 2 4 hexagonal P6_3/mmc [194] 0.059 0.192 MP 0.84 1.21 ab plane -5.58 . . . . DFT mp-12120
MMD-1107 Fe7Ge4 2 22 hexagonal P6_3/mmc [194] -0.072 0.039 MP 1.21 1.11 ab plane -0.31 . . . . DFT mp-1212970
MMD-1183 Fe2Ge 2 6 hexagonal P6_3/mmc [194] -0.030 0.079 MP 1.31 1.24 ab plane -0.90 . . . . DFT mp-20432
MMD-1189 FeS 2 4 hexagonal P6_3/mmc [194] -0.249 0.260 MP 0.10 0.09 c 0.03 . . . . DFT mp-2099
MMD-1190 Fe3Ge 2 8 hexagonal P6_3/mmc [194] -0.093 0.009 MP 1.60 1.55 ab plane -0.27 . . . . DFT mp-21078
MMD-1206 TiFe2 4 12 hexagonal P6_3/mmc [194] -0.294 0 (stable) MP 0.87 0.79 ab plane -0.30 . . . . DFT mp-2454

Footnotes:
  1. Formation energy:
    We perform DFT calculations to calculate the total enegies of all the structures. The formation energy is computed with respect to a linear combination of the total energies of reference elemental phases. When the formation energies are plotted as a function of chemical composition, a set of stable compounds forms a convex hull, which represents a boundary (theoretical lower limit) in a compositional phase diagram. Metastable compounds lie above the hull, and the energy relative to the hull (distance to the hull) is a useful quantity to examine the metastability of a new compound. The lower the formation energy above the convex hull, the more likely it is for the material to exist.
  2. Magnetic anisotropy constants:
    Magnetic anisotropy constant, Ka-c, is defined as Ka-c = Ea-Ec, where Ea and Ec are the total energies per volume for the magnetization oriented along the crystallographic a and c axes, respectively. Similarly, Kb-c and Kb-a are defined as Kb-c = Eb-Ec and Kb-a = Eb-Ea, respectively. For cubic crystal systems, magnetic anisotropy constant is calculated as Kd-a = Ed-Ea, where Ed is the total energy per volume for the magnetization oriented along the body-diagonal direction of the unit cell.

Collaborative PIs:

You can download and use the data of this database for your scientific work, provided that you express proper acknowledgements: