random selection: Y-Mn-Si (3 entries found)
Displaying 7 entries out of 7 entries found.
Crystallographic data Sstructural stability [Footnotes] Magnetic properties [Footnotes, magnetic units] Methods References
Materials ID Formula Formula units per cell Atomic sites per cell Crystal system Space group [Number] Formation energy (eV/atom) Energy relative to convex hull (eV/atom) Structure search Averaged magnetic moment (μB/atom) Magnetic polarization, Js (T) Magnetic easy axis Magnetic anisotropy constants:
Ka-c, Kb-c, Kb-a, Kd-a (MJ/m3)
Curie temperature, TC (K) Methods References
MMD-899 ZrMn2 4 12 hexagonal P6_3/mmc [194] -0.193 0.000 MP 0.42 0.34 ab plane -0.04 . . . . DFT mp-1014
MMD-922 Zr3Mn 1 4 cubic Pm-3m [221] 0.144 0.216 MP 0.87 0.49 <111> . . . -0.04 . DFT mp-1188027
MMD-923 Zr3Mn 2 8 tetragonal I4/mmm [139] 0.145 0.218 MP 0.94 0.52 c 0.26 . . . . DFT mp-1188041
MMD-935 ZrMn3 3 12 trigonal P3m1 [156] -0.105 0.040 MP 0.53 0.45 c 1.95 . . . . DFT mp-1215293
MMD-924 ZrMn3 2 8 hexagonal P6_3/mmc [194] 0.148 0.293 MP 1.61 1.28 ab plane -0.97 . . . . DFT mp-1188045
MMD-970 ZrMn2 8 24 cubic Fd-3m [227] -0.193 0 (stable) MP 0.51 0.41 a . . . 0.00 . DFT mp-2116
MMD-900 ZrMn2 8 24 hexagonal P6_3/mmc [194] -0.193 0.000 MP 0.47 0.37 ab plane -0.28 . . . . DFT mp-1015

Footnotes:
  1. Formation energy:
    We perform DFT calculations to calculate the total enegies of all the structures. The formation energy is computed with respect to a linear combination of the total energies of reference elemental phases. When the formation energies are plotted as a function of chemical composition, a set of stable compounds forms a convex hull, which represents a boundary (theoretical lower limit) in a compositional phase diagram. Metastable compounds lie above the hull, and the energy relative to the hull (distance to the hull) is a useful quantity to examine the metastability of a new compound. The lower the formation energy above the convex hull, the more likely it is for the material to exist.
  2. Magnetic anisotropy constants:
    Magnetic anisotropy constant, Ka-c, is defined as Ka-c = Ea-Ec, where Ea and Ec are the total energies per volume for the magnetization oriented along the crystallographic a and c axes, respectively. Similarly, Kb-c and Kb-a are defined as Kb-c = Eb-Ec and Kb-a = Eb-Ea, respectively. For cubic crystal systems, magnetic anisotropy constant is calculated as Kd-a = Ed-Ea, where Ed is the total energy per volume for the magnetization oriented along the body-diagonal direction of the unit cell.

Collaborative PIs:

You can download and use the data of this database for your scientific work, provided that you express proper acknowledgements: