random selection: Cr-C (9 entries found)
Displaying 31 entries out of 31 entries found.
Crystallographic data Sstructural stability [Footnotes] Magnetic properties [Footnotes, magnetic units] Methods References
Materials ID Formula Formula units per cell Atomic sites per cell Crystal system Space group [Number] Formation energy (eV/atom) Energy relative to convex hull (eV/atom) Structure search Averaged magnetic moment (μB/atom) Magnetic polarization, Js (T) Magnetic easy axis Magnetic anisotropy constants:
Ka-c, Kb-c, Kb-a, Kd-a (MJ/m3)
Curie temperature, TC (K) Methods References
MMD-981 Mn5As4 4 36 orthorhombic Cmc2_1 [36] -0.157 0.056 MP 1.44 1.11 a -0.22 0.51 0.73 . . DFT mp-28832
MMD-992 Mn3As2 8 40 orthorhombic Cmc2_1 [36] -0.114 0.076 MP 1.52 1.23 a -0.58 -0.18 0.41 . . DFT mp-568856
MMD-1474 NiP 12 24 orthorhombic Cmc2_1 [36] -0.416 0.038 MP 0.00 0.00 . . . . . . DFT mp-1102036
MMD-1508 NiP 28 56 orthorhombic Cmc2_1 [36] -0.432 0.022 MP 0.00 0.00 . . . . . . DFT mp-1194315
MMD-1902 Ga2CoN3 4 24 orthorhombic Cmc2_1 [36] 0.001 . MP 0.35 0.36 . . . . . . DFT mp-1245747
MMD-1921 CrCo2N3 4 24 orthorhombic Cmc2_1 [36] -0.067 . MP 0.00 0.00 . . . . . . DFT mp-1246564
MMD-1908 VCo2N3 4 24 orthorhombic Cmc2_1 [36] -0.199 . MP 0.00 0.00 . . . . . . DFT mp-1246070
MMD-1924 Al2CoN3 4 24 orthorhombic Cmc2_1 [36] -0.639 . MP 0.35 0.39 . . . . . . DFT mp-1246714
MMD-1929 CoSi2N3 4 24 orthorhombic Cmc2_1 [36] -0.582 . MP 0.33 0.39 . . . . . . DFT mp-1246895
MMD-2277 Ga2FeN3 4 24 orthorhombic Cmc2_1 [36] -0.083 . MP 0.80 0.79 b 0.65 -1.00 -1.64 . . DFT mp-1245395
MMD-2160 Fe5SiC 8 56 orthorhombic Cmc2_1 [36] -0.178 . MP 1.33 1.48 . . . . . . DFT mp-1212719
MMD-2279 Al2FeN3 4 24 orthorhombic Cmc2_1 [36] -0.742 . MP 0.83 0.87 b 0.59 -0.05 -0.64 . . DFT mp-1245423
MMD-2309 FeSi2N3 4 24 orthorhombic Cmc2_1 [36] -0.549 . MP 0.50 0.58 a -0.96 0.14 1.10 . . DFT mp-1246402
MMD-2323 VFe2N3 4 24 orthorhombic Cmc2_1 [36] -0.272 . MP 0.00 0.00 . . . . . . DFT mp-1246955
MMD-2284 CrFe2N3 4 24 orthorhombic Cmc2_1 [36] -0.157 . MP 0.16 0.20 . . . . . . DFT mp-1245504
MMD-2322 AlFe2N3 4 24 orthorhombic Cmc2_1 [36] -0.265 . MP 0.00 0.00 . . . . . . DFT mp-1246890
MMD-2282 GaFe2N3 4 24 orthorhombic Cmc2_1 [36] 0.063 . MP 0.00 0.00 . . . . . . DFT mp-1245459
MMD-2686 Mn2FeN2 4 20 orthorhombic Cmc2_1 [36] 0.002 . MP 0.54 0.60 a -1.31 -1.14 0.18 . . DFT mp-1245907
MMD-2699 Mn2NiN2 4 20 orthorhombic Cmc2_1 [36] -0.019 . MP 0.62 0.66 c 1.48 0.62 -0.85 . . DFT mp-1246288
MMD-2709 Mn2CoN2 4 20 orthorhombic Cmc2_1 [36] 0.088 . MP 0.44 0.47 . . . . . . DFT mp-1246667
MMD-2862 Y2MnS4 4 28 orthorhombic Cmc2_1 [36] -1.633 . MP 0.71 0.38 . . . . . . DFT mp-1216082
MMD-2939 Mn2NbN3 4 24 orthorhombic Cmc2_1 [36] -0.402 . MP 0.19 0.21 . . . . . . DFT mp-1245448
MMD-2960 MnGa2N3 4 24 orthorhombic Cmc2_1 [36] -0.205 . MP 0.67 0.66 . . . . . . DFT mp-1245903
MMD-2980 Mn2CrN3 4 24 orthorhombic Cmc2_1 [36] -0.271 . MP 0.50 0.60 . . . . . . DFT mp-1246797
MMD-2950 MnAl2N3 4 24 orthorhombic Cmc2_1 [36] -0.860 . MP 0.67 0.70 . . . . . . DFT mp-1245638
MMD-2805 MnZn2N3 4 24 orthorhombic Cmc2_1 [36] -0.025 0 (stable) MP 0.32 0.32 . . . . . . DFT mp-1029354
MMD-2830 Mn5SiC 8 56 orthorhombic Cmc2_1 [36] -0.187 . MP 0.72 0.80 . . . . . . DFT mp-1192695
MMD-2990 Mn2Si4N7 4 52 orthorhombic Cmc2_1 [36] -0.576 . MP 0.69 0.75 . . . . . . DFT mp-1247373
MMD-3342 Al2NiN3 4 24 orthorhombic Cmc2_1 [36] -0.560 . MP 0.19 0.21 . . . . . . DFT mp-1246782
MMD-3340 CrNi2N3 4 24 orthorhombic Cmc2_1 [36] 0.013 . MP 0.00 0.00 . . . . . . DFT mp-1246517
MMD-3351 Ga2NiN3 4 24 orthorhombic Cmc2_1 [36] 0.078 . MP 0.18 0.18 . . . . . . DFT mp-1247292

Footnotes:
  1. Formation energy:
    We perform DFT calculations to calculate the total enegies of all the structures. The formation energy is computed with respect to a linear combination of the total energies of reference elemental phases. When the formation energies are plotted as a function of chemical composition, a set of stable compounds forms a convex hull, which represents a boundary (theoretical lower limit) in a compositional phase diagram. Metastable compounds lie above the hull, and the energy relative to the hull (distance to the hull) is a useful quantity to examine the metastability of a new compound. The lower the formation energy above the convex hull, the more likely it is for the material to exist.
  2. Magnetic anisotropy constants:
    Magnetic anisotropy constant, Ka-c, is defined as Ka-c = Ea-Ec, where Ea and Ec are the total energies per volume for the magnetization oriented along the crystallographic a and c axes, respectively. Similarly, Kb-c and Kb-a are defined as Kb-c = Eb-Ec and Kb-a = Eb-Ea, respectively. For cubic crystal systems, magnetic anisotropy constant is calculated as Kd-a = Ed-Ea, where Ed is the total energy per volume for the magnetization oriented along the body-diagonal direction of the unit cell.

Collaborative PIs:

You can download and use the data of this database for your scientific work, provided that you express proper acknowledgements: