random selection: Fe-Ni-Se (5 entries found)
Displaying 4 entries out of 4 entries found.
Crystallographic data Sstructural stability [Footnotes] Magnetic properties [Footnotes, magnetic units] Methods References
Materials ID Formula Formula units per cell Atomic sites per cell Crystal system Space group [Number] Formation energy (eV/atom) Energy relative to convex hull (eV/atom) Structure search Averaged magnetic moment (μB/atom) Magnetic polarization, Js (T) Magnetic easy axis Magnetic anisotropy constants:
Ka-c, Kb-c, Kb-a, Kd-a (MJ/m3)
Curie temperature, TC (K) Methods References
MMD-666 ZrCo4N 4 24 orthorhombic Cmcm [63] -0.385 0.182 AGA search 1.04 1.02 c 0.78 0.73 -0.04 . . DFT MS
MMD-667 ZrCo4N 4 24 orthorhombic Cmcm [63] -0.384 0.182 AGA search 1.04 1.02 c 0.77 0.73 -0.04 . . DFT MS
MMD-668 ZrCo4N 2 12 orthorhombic Cmcm [63] -0.384 0.191 AGA search 1.05 1.03 b -0.07 -0.82 -0.75 . . DFT MS
MMD-669 ZrCo4N 2 12 orthorhombic Cmcm [63] -0.384 0.210 AGA search 1.05 1.03 b -0.08 -0.81 -0.73 . . DFT MS

Footnotes:
  1. Formation energy:
    We perform DFT calculations to calculate the total enegies of all the structures. The formation energy is computed with respect to a linear combination of the total energies of reference elemental phases. When the formation energies are plotted as a function of chemical composition, a set of stable compounds forms a convex hull, which represents a boundary (theoretical lower limit) in a compositional phase diagram. Metastable compounds lie above the hull, and the energy relative to the hull (distance to the hull) is a useful quantity to examine the metastability of a new compound. The lower the formation energy above the convex hull, the more likely it is for the material to exist.
  2. Magnetic anisotropy constants:
    Magnetic anisotropy constant, Ka-c, is defined as Ka-c = Ea-Ec, where Ea and Ec are the total energies per volume for the magnetization oriented along the crystallographic a and c axes, respectively. Similarly, Kb-c and Kb-a are defined as Kb-c = Eb-Ec and Kb-a = Eb-Ea, respectively. For cubic crystal systems, magnetic anisotropy constant is calculated as Kd-a = Ed-Ea, where Ed is the total energy per volume for the magnetization oriented along the body-diagonal direction of the unit cell.

Collaborative PIs:

You can download and use the data of this database for your scientific work, provided that you express proper acknowledgements: