random selection: Mn-Se (6 entries found)
Displaying 7 entries out of 7 entries found.
Crystallographic data Sstructural stability [Footnotes] Magnetic properties [Footnotes, magnetic units] Methods References
Materials ID Formula Formula units per cell Atomic sites per cell Crystal system Space group [Number] Formation energy (eV/atom) Energy relative to convex hull (eV/atom) Structure search Averaged magnetic moment (μB/atom) Magnetic polarization, Js (T) Magnetic easy axis Magnetic anisotropy constants:
Ka-c, Kb-c, Kb-a, Kd-a (MJ/m3)
Curie temperature, TC (K) Methods References
MMD-1787 Zr6Al16Co7 4 116 cubic Fm-3m [225] -0.577 0 (stable) MP 0.06 0.05 . . . . . . DFT mp-1194423
MMD-1825 ZrAlCo 8 24 orthorhombic Amm2 [38] -0.485 . MP 0.00 0.00 . . . . . . DFT mp-1215357
MMD-1836 Zr3AlCo8 3 36 trigonal R3m [160] -0.327 . MP 0.10 0.08 . . . . . . DFT mp-1215811
MMD-1823 ZrAlCo4 4 24 cubic F-43m [216] -0.339 . MP 0.51 0.46 . . . . . . DFT mp-1215333
MMD-1828 Zr2Al3Co 3 18 trigonal R-3m [166] -0.527 . MP 0.00 0.00 . . . . . . DFT mp-1215510
MMD-1946 Zr6Al2Co 1 9 hexagonal P-62m [189] -0.350 0 (stable) MP 0.00 0.00 . . . . . . DFT mp-12760
MMD-1988 ZrAlCo2 4 16 cubic Fm-3m [225] -0.523 0 (stable) MP 0.25 0.21 a . . . 0.00 . DFT mp-3909

Footnotes:
  1. Formation energy:
    We perform DFT calculations to calculate the total enegies of all the structures. The formation energy is computed with respect to a linear combination of the total energies of reference elemental phases. When the formation energies are plotted as a function of chemical composition, a set of stable compounds forms a convex hull, which represents a boundary (theoretical lower limit) in a compositional phase diagram. Metastable compounds lie above the hull, and the energy relative to the hull (distance to the hull) is a useful quantity to examine the metastability of a new compound. The lower the formation energy above the convex hull, the more likely it is for the material to exist.
  2. Magnetic anisotropy constants:
    Magnetic anisotropy constant, Ka-c, is defined as Ka-c = Ea-Ec, where Ea and Ec are the total energies per volume for the magnetization oriented along the crystallographic a and c axes, respectively. Similarly, Kb-c and Kb-a are defined as Kb-c = Eb-Ec and Kb-a = Eb-Ea, respectively. For cubic crystal systems, magnetic anisotropy constant is calculated as Kd-a = Ed-Ea, where Ed is the total energy per volume for the magnetization oriented along the body-diagonal direction of the unit cell.

Collaborative PIs:

You can download and use the data of this database for your scientific work, provided that you express proper acknowledgements: