random selection: Y-Fe-Si (8 entries found)
Displaying 7 entries out of 7 entries found.
Crystallographic data Sstructural stability [Footnotes] Magnetic properties [Footnotes, magnetic units] Methods References
Materials ID Formula Formula units per cell Atomic sites per cell Crystal system Space group [Number] Formation energy (eV/atom) Energy relative to convex hull (eV/atom) Structure search Averaged magnetic moment (μB/atom) Magnetic polarization, Js (T) Magnetic easy axis Magnetic anisotropy constants:
Ka-c, Kb-c, Kb-a, Kd-a (MJ/m3)
Curie temperature, TC (K) Methods References
MMD-2129 Y2Al3Fe14 2 38 hexagonal P6_3/mmc [194] -0.130 . MP 1.49 1.27 . . . . . . DFT mp-1196730
MMD-2185 YAlFe 4 12 orthorhombic Imma [74] -0.305 . MP 0.55 0.35 . . . . . . DFT mp-1215937
MMD-2188 Y2AlFe3 3 18 trigonal R-3m [166] -0.180 . MP 0.68 0.47 . . . . . . DFT mp-1216110
MMD-2189 Y2Al3Fe 3 18 trigonal R-3m [166] -0.415 . MP 0.32 0.20 . . . . . . DFT mp-1216123
MMD-2146 Y(AlFe2)4 2 26 tetragonal I4/mmm [139] -0.238 . MP 1.18 1.00 c 0.54 . . . . DFT mp-1207708
MMD-2338 Y(Al5Fe)2 4 52 orthorhombic Cmcm [63] -0.359 0 (stable) MP 0.00 0.00 . . . . . . DFT mp-16744
MMD-2378 Y(Al2Fe)4 2 26 tetragonal I4/mmm [139] -0.436 0 (stable) MP 0.43 0.34 ab plane -0.62 . . . . DFT mp-4656

Footnotes:
  1. Formation energy:
    We perform DFT calculations to calculate the total enegies of all the structures. The formation energy is computed with respect to a linear combination of the total energies of reference elemental phases. When the formation energies are plotted as a function of chemical composition, a set of stable compounds forms a convex hull, which represents a boundary (theoretical lower limit) in a compositional phase diagram. Metastable compounds lie above the hull, and the energy relative to the hull (distance to the hull) is a useful quantity to examine the metastability of a new compound. The lower the formation energy above the convex hull, the more likely it is for the material to exist.
  2. Magnetic anisotropy constants:
    Magnetic anisotropy constant, Ka-c, is defined as Ka-c = Ea-Ec, where Ea and Ec are the total energies per volume for the magnetization oriented along the crystallographic a and c axes, respectively. Similarly, Kb-c and Kb-a are defined as Kb-c = Eb-Ec and Kb-a = Eb-Ea, respectively. For cubic crystal systems, magnetic anisotropy constant is calculated as Kd-a = Ed-Ea, where Ed is the total energy per volume for the magnetization oriented along the body-diagonal direction of the unit cell.

Collaborative PIs:

You can download and use the data of this database for your scientific work, provided that you express proper acknowledgements: