random selection: Fe-Si (47 entries found)
Displaying 8 entries out of 8 entries found.
Crystallographic data Sstructural stability [Footnotes] Magnetic properties [Footnotes, magnetic units] Methods References
Materials ID Formula Formula units per cell Atomic sites per cell Crystal system Space group [Number] Formation energy (eV/atom) Energy relative to convex hull (eV/atom) Structure search Averaged magnetic moment (μB/atom) Magnetic polarization, Js (T) Magnetic easy axis Magnetic anisotropy constants:
Ka-c, Kb-c, Kb-a, Kd-a (MJ/m3)
Curie temperature, TC (K) Methods References
MMD-1160 FeS2 2 6 orthorhombic Pnnm [58] -0.528 0 (stable) MP 0.00 0.00 . . . . . . DFT mp-1522
MMD-1202 FeS2 4 12 cubic Pa-3 [205] -0.519 0.009 MP 0.00 0.00 . . . . . . DFT mp-226
MMD-1247 FeS2 4 12 orthorhombic Pcca [54] -0.088 0.440 MP 0.84 0.57 a -0.69 -0.10 0.58 . . DFT mp-615366
MMD-1269 FeS2 4 12 monoclinic P2/c [13] -0.088 0.441 MP 0.85 0.57 b -0.04 -0.54 -0.51 . . DFT mp-850009
MMD-1291 FeS2 4 12 tetragonal I-42d [122] -0.170 0.358 MP 0.00 0.00 . . . . . . DFT mvc-11070
MMD-1292 FeS2 3 9 trigonal R-3m [166] -0.324 0.204 MP 0.60 0.33 ab plane -1.03 . . . . DFT mvc-11234
MMD-1293 FeS2 16 48 cubic Fd-3m [227] -0.284 0.244 MP 0.61 0.43 . . . . . . DFT mvc-11411
MMD-1294 FeS2 12 36 trigonal R-3m [166] -0.284 0.245 MP 0.61 0.42 ab plane -0.45 . . . . DFT mvc-13558

Footnotes:
  1. Formation energy:
    We perform DFT calculations to calculate the total enegies of all the structures. The formation energy is computed with respect to a linear combination of the total energies of reference elemental phases. When the formation energies are plotted as a function of chemical composition, a set of stable compounds forms a convex hull, which represents a boundary (theoretical lower limit) in a compositional phase diagram. Metastable compounds lie above the hull, and the energy relative to the hull (distance to the hull) is a useful quantity to examine the metastability of a new compound. The lower the formation energy above the convex hull, the more likely it is for the material to exist.
  2. Magnetic anisotropy constants:
    Magnetic anisotropy constant, Ka-c, is defined as Ka-c = Ea-Ec, where Ea and Ec are the total energies per volume for the magnetization oriented along the crystallographic a and c axes, respectively. Similarly, Kb-c and Kb-a are defined as Kb-c = Eb-Ec and Kb-a = Eb-Ea, respectively. For cubic crystal systems, magnetic anisotropy constant is calculated as Kd-a = Ed-Ea, where Ed is the total energy per volume for the magnetization oriented along the body-diagonal direction of the unit cell.

Collaborative PIs:

You can download and use the data of this database for your scientific work, provided that you express proper acknowledgements: