random selection: Fe-Co-N (272 entries found)
Displaying 5 entries out of 5 entries found.
Crystallographic data Sstructural stability [Footnotes] Magnetic properties [Footnotes, magnetic units] Methods References
Materials ID Formula Formula units per cell Atomic sites per cell Crystal system Space group [Number] Formation energy (eV/atom) Energy relative to convex hull (eV/atom) Structure search Averaged magnetic moment (μB/atom) Magnetic polarization, Js (T) Magnetic easy axis Magnetic anisotropy constants:
Ka-c, Kb-c, Kb-a, Kd-a (MJ/m3)
Curie temperature, TC (K) Methods References
MMD-1036 Fe3Ni 4 16 cubic Fm-3m [225] 0.024 0.059 MP 2.16 2.17 a . . . 0.00 . DFT mp-1007853
MMD-1039 Fe3Ni 2 8 tetragonal I4/mmm [139] 0.040 0.074 MP 2.04 2.05 ab plane -0.52 . . . . DFT mp-1007862
MMD-1126 Fe3Ni 2 8 orthorhombic Cmmm [65] 0.002 0.037 MP 2.01 2.03 b -0.11 -0.85 -0.74 . . DFT mp-1224780
MMD-1128 Fe3Ni 3 12 trigonal R-3m [166] 0.089 0.123 MP 2.02 2.09 c 1.39 . . . . DFT mp-1224827
MMD-1283 Fe3Ni 1 4 cubic Pm-3m [221] 0.042 0.077 MP 2.04 2.06 a . . . 0.00 . DFT mp-999189

Footnotes:
  1. Formation energy:
    We perform DFT calculations to calculate the total enegies of all the structures. The formation energy is computed with respect to a linear combination of the total energies of reference elemental phases. When the formation energies are plotted as a function of chemical composition, a set of stable compounds forms a convex hull, which represents a boundary (theoretical lower limit) in a compositional phase diagram. Metastable compounds lie above the hull, and the energy relative to the hull (distance to the hull) is a useful quantity to examine the metastability of a new compound. The lower the formation energy above the convex hull, the more likely it is for the material to exist.
  2. Magnetic anisotropy constants:
    Magnetic anisotropy constant, Ka-c, is defined as Ka-c = Ea-Ec, where Ea and Ec are the total energies per volume for the magnetization oriented along the crystallographic a and c axes, respectively. Similarly, Kb-c and Kb-a are defined as Kb-c = Eb-Ec and Kb-a = Eb-Ea, respectively. For cubic crystal systems, magnetic anisotropy constant is calculated as Kd-a = Ed-Ea, where Ed is the total energy per volume for the magnetization oriented along the body-diagonal direction of the unit cell.

Collaborative PIs:

You can download and use the data of this database for your scientific work, provided that you express proper acknowledgements: